Brief information about the project

Name of the project	AP19679444 «Development of a long-acting
	biopreparation based on a polymer matrix with effective
	microorganisms for agricultural plant growth promotion».
Relevance	The project is aimed at studying biosurfactants of
	indigenous microorganisms of Western Kazakhstan fields
	for a basic understanding of oil recovery processes. The
	main idea: selection of indigenous microorganisms and
	optimal conditions for their effective use to reduce the
	viscosity of residual oil, in general, enhance oil recovery
	from mature reservoirs of Western Kazakhstan oil fields.
	Before being used in a model experiment, indigenous
	microorganisms and their biosurfactants will be studied in
	the laboratory.
Purpose	To develop an innovative long-acting biopreparation based
	on a microbial polymer matrix including an association of
	effective microorganisms and protective- nutritional
	additives to promote growth and protect agricultural plants
	from phytopathogens and salt stress.
Objectives	1) Creation of an association of microorganisms
	with agronomically valuable properties and development
	of a biotechnological scheme for polymer synthesis.
	At the first stage, a new association of effective
	microorganisms with agronomically valuable properties
	will be created. When creating an association, it is
	important to consider the type of relationship between
	microorganisms, physiological characteristics and needs of
	co-cultures. Therefore, the biocompatibility of strains will
	be determined and optimal conditions for their co-
	cultivation will be selected. The biological activity of
	single strains and the created association will be evaluated
	biocontrol properties against phytopathogons, phosphate
	mobilizing activity and halotolerance
	At the next stage a biotechnological scheme for
	synthesizing pullulan and polyhydroxyalconate as a basis
	of the polymer matrix will be developed. Furthermore, the
	nutrient medium for cultivation will be optimized to
	increase the productivity of biopolymer producers and
	reduce the cost of the finished product. To do this the
	precursor substances of polymers and the main
	components of the medium, including by-products of
	various industries (molasses, oilcake, and beet pulp), will
	be selected. In addition, methods of isolation and
	purification of biopolymers that significantly impact their
	physico-chemical properties will be perfected.
	2) Production of biopreparation based on a polymer
	matrix with effective microorganisms that promote plant
	growth.
	To create a polymer matrix, the physico-chemical
	and mechanical properties of the biopolymers as its basis

	will be determined. Due to the fact that hydrophobic properties of polyhydroxyalkanoate can be used as a prolonging agent, but limit its use due to the low rate of
	biodegradation, we will develop an innovative approach to obtaining a polymer matrix. For this purpose, the
	with hydrophilic pullulan will be carried out, reducing the degradation time of the polymer matrix and providing a
	prolonged effect of the biopreparation. At the next stage, experimental samples of the
	biopreparation will be obtained. So, optimal concentrations of protective-nutritional components (fungicides organominarel additives) will be selected and
	a method of their immobilization, together with the association of microorganisms into the created polymer
	matrix, will be perfected. An essential stage in developing a long-acting biological product is the preservation of the
	viability and biological activity of microorganisms. In this regard, the survival rate of microorganisms on the polymer matrix the stability of biological properties storage
	period, and technological parameters of the biopreparation (solubility, hygroscopicity, ability to stay on seeds, roots,
	3) Development of methods of application of
	of the effectiveness of their action on agricultural crops.
	the biopreparation will be developed: seed coating before sowing, spraying plants in different phases of vegetation,
	and introducing them into the soil as a root additive. For a complex assessment of the effect of the biopreparation,
	step-by-step studies will be carried out: model vegetation experiments in a climatic chamber and subsequent small- scale field experiments. Stimulation of plant growth under
	the influence of a biopreparation will be evaluated by the sowing qualities of seeds, the intensity of plant growth
	processes, yield, physico-chemical and technological indicators of grain quality. An increase in the adaptive
	potential of plants due to application of biopreparation will be demonstrated in model experiments when growing
	plants under phytopathogenic load and salt stress conditions.
Expected and achieved results	It is planned to get the following results: - an association of microorganisms with
	agronomically valuable properties will be created and biotechnological scheme for polymer synthesis will be developed
	- a biopreparation based on a polymer matrix with effective microorganisms that promote plant growth will
	be produced; - methods of application of experimental samples
	of the biopreparation will be developed and the

	effectiveness of their action on agricultural crops will be
	evaluated
	Research carried out within the framework of the
	project will be an integrated approach to solving
	fundamental and applied issues in the field of
	agraphictechnology microbial synthesis of biologically
	agroup agroup agroup and a synthesis of bloog carry
	active substances, improvement of refinentation processes
	using inicrobial cell ininobilization inethods,
	development of optimal commercial forms of
	biopreparations, biopreparation has a high notantial for
	innovative diopreparation has a high potential for
	commercialization for application in crop production,
	since its production and use is a resource-saving, eco-
	includy and low-cost technology, and there are no
	analogues on the domestic market. The use of this
	biopreparation will contribute to increasing the yield,
	improving the quanty of agricultural products, avoiding
	for the use of several expensive pesticides, increasing son
	renduce environmentally sofe products cignificantly
	produce environmentally sale products, significantly
	any ironmental situation in Kazakhstan
	The regults of the project will be of applied
	importance associated with the creation of high quality
	competitive domestic biopreparations that meet high
	consumer requirements and provide a reduced load on
	agrophytocenoses. The scientific and technical potential of
	the project will make it possible to contribute to the study
	of the mechanisms of biological activity of
	microorganisms the physico-chemical characteristics of
	microbial polymers the kinetics of degradation of
	biopolymers and the dynamics of the release of
	microorganisms and their metabolites from the obtained
	forms of long-acting preparations The results obtained will
	be published in domestic and foreign journals indexed in
	Scopus and/or Web of Science, presentations are planned
	at leading international Kazakhstan and foreign scientific
	conferences which will contribute to the integration of
	members of the research group into the global scientific
	space, increase competitiveness, and expand the field joint
	research with foreign colleagues.
Research team members with	1. Ignatova L.V PhD. associate professor. h-инлекс
their identifiers (Scopus Author	4. Researcher ID A-8885-2015. ORCID 0000-
ID, Researcher ID, ORCID. if	0002-0811-6775, Scopus author ID: 55536713500.
available) and links to relevant	2. Brazhnikova Y.V., master of biotechnology. h-
profiles	индекс 3, ORCID 0000-0003-3807-6847, Scopus
	author ID: 56580390600.
	3. Omirbekova A.A. PhD, assistant professor. h-
	индекс 4, Researcher ID B-1158-2018, ORCID
	<u>0000-0002-5667-6240</u> , Scopus author
	ID:56507360700.

	4. Usmanova A.D. master of biotechnology. ORCID 0000-0002-8144-7941
List of publications with links to	
them	
Patents	-